
Intro to JavaScript
An introduction to JavaScript including a brief overview of its history, how it’s

used in the industry, and how to write and run JavaScript programs.

JavaScript and Programming Languages

What is JavaScript?
JavaScript was originally created to make things happen on websites.

Any interactivity or dynamic functionality of a website is usually done using JavaScript.

Making websites interactive is still one of the main purposes of JavaScript today.

But it’s also used for several other things, such as handling back-end logic on servers.

About programming languages
A programming language is a type of formal language.

Formal languages aren’t like natural languages that people speak (ex.: English)

Formal languages are created and designed by people for specific purposes.

Ex.: programming, chemical notation (), arithmetic ()H2O sin(θ ± n ∗ Δ)

Natural languages can break rules and still have meaning…

The great fall of the offwall entailed at such short notice the pftjschute of Finnegan,
erse solid man, that the humptyhillhead of humself prumptly sends an unquiring
one well to the west in quest of his tumptytumtoes […]

– James Joyce, Finnegan’s Wake

Formal languages are more strict—you have to follow rules exactly.

For example, here’s an invalid mathematical expression:

What makes it invalid?

Programming languages—like all formal languages—have specific:

Tokens (use the right kinds of characters)

The token doesn’t have meaning in math.

Structure (use tokens in the right order)

 has valid tokens but they’re not in the right order.

Together, meaningful tokens + correct structure = syntax

In order to write JavaScript programs that run successfully, we need to learn the rules for creating valid

JavaScript syntax!

JavaScript Syntax

A preview of what’s to come
Each statement on one line, by itself, ending
with a semicolon (;)

Capitalization matters

Curly brackets ({}) group code together

Quotes around strings like 'All digits:'—

no quotes around numbers like 0

Special words like while, let

3/ + 6$

$

3/ + 6

const letters = 'abcde';
console.log(letters.length);

let i = 0;
while (i < 5) {
 console.log('Current letter:',
letters[i]);
 i = i + 1;
}

const isRaining = true;

…and more!

NOTE

Semicolons
Semicolons aren’t strictly necessary for JavaScript code to work. If you don’t add semicolons, JavaScript
will attempt to guess where semicolons should go. This is called automatic semicolon insertion. You won’t
break your code by forgetting a semicolon, but it’s good practice to put a semicolon at the end of each line,
especially since it’ll help you write other C-like languages where semicolons are required (like C and Java).

A note on syntax errors
When you’re learning a new language (even languages that aren’t programming languages) it’s normal
to get it wrong all the time.

Programming languages like JavaScript are very strict and exact with syntax.

JavaScript tries to help by outputting a SyntaxError when it can’t understand your code.

Here’s a sentence that JavaScript won’t understand (even though we can understand it just fine):

If we try to run this in JavaScript…

if $2.00 is pretty close to $2.50, then say "Close enough!"
 ^^

Uncaught SyntaxError: Unexpected identifier '$2'

JavaScript will throw a SyntaxError if it can’t understand your code

It’ll even try to guess the part of your code that created the error!

Expect this to happen quite often—it’s completely normal to have a lot of errors while learning

Tip: read JavaScript’s error messages and check for typos

if (isRaining) {
 console.log("Don't forget your
umbrella");
}

console.log('Done!');

if $2.00 is pretty close to $2.50, then say "Close enough!"

The traditional first program

console.log is a function used to display values placed inside the parentheses (())

'Hello, world!' is a value that’s a string (as in, “a string of text”)

// marks a line as a comment—JavaScript will ignore comments

console.log
The console.log function is a web developer’s best friend!

Notice that console.log() shows up as an empty line.

Later, we’ll use console.log to inspect variables and see how their values change.

Comments
Comments are great for annotating and adding notes to your source code.

You can have multiple comments—as many as you want!

Values and Variables

Values and data types
A value is a piece of data.

Values belong to categories called data types.

Different data types are treated differently by JavaScript.

console.log('Hello, world!');
// JavaScript is super cool!

console.log('Hi');
console.log();
console.log('How are you?');

console.log('Hi');
// TODO: eventually I should remove the line below...
// It's fine for now though.
console.log();
console.log('How are you?');

Data types in JavaScript

Name Example

String 'Hello, world!', '!'

Number 1, 3.14, -20.34666

Boolean true, false

Null null

Undefined undefined

Variables
Variables are used to store values so you can use them later.

Hello, world!

Steps to create a variable:

1. Think of a good name for the variable (ex.: favFruits, greeting)

Valid characters are letters, numbers, and underscores

As long as you don’t start with a number

2. Start with a declaration (const), then your variable name

3. Add the assignment operator (=) after the name

4. Add the value you want to store in the variable after =

Ex.: const greeting = 'Hello, world!';

You’ll see lots of examples of creating and using variables throughout this lecture!

Variable reassignment
Sometimes, you’ll want to update the value stored in a variable.

const greeting = 'Hello, world!';
console.log(greeting);

const score = 0;

To create variables that are re-assignable, use the let declaration:

NOTE

While it’s possible to reassign a variable to a value of a different data type, it’s not a good practice to do so.

const vs. let

Rule of thumb: prefer using const over let until you need a re-assignable variable.

NOTE

var
Earlier versions of JavaScript did not have let and const. Instead, variables were declared with the var
keyword.

var is currently outdated syntax (although it still works for backwards compatibility reasons). The way var
works leads to unexpected behavior, which can cause bugs that are difficult to fix.

// This won't work!
score = score + 10;

Uncaught TypeError: Assignment to constant variable.

let score = 0;

// Success!
score = score + 10;

console.log(score); // 10

// Must be initialized to a value
const name = 'Will';
console.log(name); // Will

// Doesn't work with reassignment
operator
name = name + 'iam'; // TypeError

// Can store any data type
const pi = 3.14;

// Can be initialized without a value
let currentID;
console.log(currentID); // undefined

// Works with reassignment operator
currentID = 105;

// Can store any data type
let shouldContinue = true;

var myScore = 10;

All modern browsers now support let and const so you should never use var.

Basic Data Types

Overview of basic data types
In this section, we’ll show examples of working with various data types:

Strings

Numbers

Booleans

undefined
null

Strings

String basics
AKA a string of text.

A string that’s an entire sentence

A string that’s just one character

A string with symbols and numbers

Strings are surrounded by quotation marks.

You can use single quotes (') or double quotes (")

Take care not to mismatch them!

'Hello, world!'

'a'

'! 3&*# 29'

"Hello, world!"

// DON'T do this
"Hello, world!'

String concatenation
You can use the + (plus) operator to concatenate strings together.

JavaScript!!!
JavaScript!!! Yum.

NOTE

Concatenate
Concatenate is a fancy word for “smush values together to form a new one”. The act of adding one string
to another with + creates a brand new string and can be referred to as string concatenation.

Template strings
Another way to create a string is with a template string or template literal.

Template strings are surrounded by backticks (`)

Template strings allow you to create multi-line strings.

let favWord = 'JavaScript';
favWord = favWord + '!!!';
console.log(favWord);

// You can concatenate multiple strings at once
console.log(favWord + ' ' + 'Yum.');

const phrase = `Gotta catch 'em all!`;

const poem = `Roses are red
Sugar is sweet
His boots are too big
For his goshdarn feet`;
console.log(poem);

NOTE

Creating line breaks with \n
You can create strings that have line breaks using normal string syntax, too. Instead of using Enter to
create a new line, you add the newline (\n) character:

They’re also used to template-in values of JavaScript expressions.

Other things you can do with strings

Roses are red
Sugar is sweet
His boots are too big
For his goshdarn feet

const poem = 'Roses are red\nSugar is sweet\nHis boots are too big\nFor his goshdarn
feet';

const adjective = 'gigantic';
const color = 'brown';
const animal = 'fox';

const madlib = `The ${adjective} ${color} space hamster jumped over the lazy
${animal}.`
console.log(madlib);

The gigantic brown space hamster jumped over the lazy fox.

const word = 'coffee';

// Get length
word.length; // 6

// Get an individual character
word[0]; // 'c'
word[1]; // 'o'
word[2]; // 'f'

// Return a new string with uppercased letters
word.toUpperCase(); // 'COFFEE'

// Check if string has 'a' in it

For a complete list, see MDN’s JavaScript Reference doc on strings.

Numbers

Number basics
Numbers can be positive or negative.

Positive, unsigned numbers

Negative, signed numbers

Arithmetic operators
You can perform mathematical operations on numbers.

Name Operator Example

Add + 5 + 3

Subtract - 5 - 100

Multiply * 2 * 3

Divide / 5 / 2

Exponents ** 5 ** 2

For example:

Adding numbers together

word.includes('a'); // false

// Check if string starts with 'cof'
word.startsWith('cof'); // true

100
29.99

-150078
-0.5

const total = 100 + 0.5;
console.log(total);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

Dividing numbers

Updating numbers
Common operation: reassign to update a number value.

Shortcut +=/-=

Booleans

About boolean values
There are just two possible boolean values: true and false.

They’re used to execute code based on conditional logic (more on this later)

Example of conditional logic

100.5

const numPrizes = 20;
const totalAttendees = 5;

// Show prizes per attendee
console.log(numPrizes / totalAttendees);

4

let sum = 0;
console.log(sum);

sum = sum + 2;
console.log(sum);

sum = sum + 2;
console.log(sum);

0
2
4

sum += 2; // sum = sum + 2

sum -= 1; // sum = sum - 1

I’m awake!

Syntax matters
JavaScript is case-sensitive: true and false are not the same as True and False

What would happen if you tried to run console.log(True)?

true and false are also not equivalent to 'true' and 'false'

Which values are booleans? Which ones are strings? How can you tell?

Comparison expressions
Comparison expressions are used to compare one value with another and return a boolean value.

Is 0 greater than 200?

Here are the comparison operators in JavaScript.

Name Operator Example

Equals === 100 === 100

Not equals !== 100 !== 100

Less than < 100 < 100

Greater than > 100 > 100

const sleepy = false;
if (sleepy) {
 console.log('Yawn...');
} else {
 console.log("I'm awake!");
}

Uncaught ReferenceError: True is not defined

console.log(0 > 200);

false

Name Operator Example

Less than or equal to <= 100 <= 100

Greater than or equal to >= 100 >= 100

Conditional statements
Conditional logic (or branching logic) is when a program executes different procedures depending on a

specified condition.

Is it cloudy
outside?

Take
raincoat

yes

Take
jacket

no

Booleans are used to implement conditional logic with the if...else statement.

Check if names are the same and ouput a message

That’s a nice name.

Output an error message if password is too short

const myName = 'Muir';
const yourName = 'Sam';

if (myName === yourName) {
 console.log('We have the same name!');
} else {
 console.log("That's a nice name.");
}

const password = 'hunter2';
if (password.length < 8) {
 console.log('Password is too short!');
}

Password is too short!

Compare number of pets

You have more pets than me!

NOTE

Block statements
Block statements group multiple statements together inside curly brackets ({}).

undefined and null
When you declare a variable but don’t give it an initial value, its value will be set to undefined.

Another value used to represent nothingness is null.

null is the intentional absence of value, whereas undefined means no value has been

assigned yet.

Functions

About functions
You’re already familiar with the console.log() function:

const myNumPets = 2;
const yourNumPets = 4;

if (myNumPets > yourNumPets) {
 console.log('I have more pets than you!');
} else if (myNumPets < yourNumPets) {
 console.log('You have more pets than me!');
} else {
 console.log('We have the same number of pets!');
}

console.log('Hello, world!');

Functions are named groups of code that can be reused.

NOTE

Methods
In JavaScript, a method is a type of function. You’ll learn more about methods during the lesson on
objects.

Calling functions
You can call a function by adding parentheses (()) after its name.

This will execute the block of code inside the function.

The parentheses are important! Without them, JavaScript won’t call the function.

So, to call console.log()…

1. Type the function’s name, console.log

2. Follow it with a pair of parentheses (())

3. List inputs (if any) inside the parentheses

Looking Ahead

Coming up
More about conditional logic

and loops!

console.log

console.log()

console.log('Hello, world!');

